

Welcome to DSCleaner’s documentation!

What is DS Cleaner?

DS Cleaner (Dataset Cleaner) is a library that allows for easy cleanup of energy disagregation datasets and allows
converting in wave and wave64.
Is based in librosa and PySoundFile library.

Package contents:

	DS Cleaner Package
	DSCleaner’s class diagram

	dscleaner.IFileInfo class

	dscleaner.CSVFileInfo class

	dscleaner.FileInfo class

	dscleaner.FileUtil class

	dscleaner.FileWriter class

	dscleaner.Merger class

	dscleaner.Splitter class

	dscleaner.Utils module

Indices and tables

	Index

	Module Index

	Search Page

DS Cleaner Package

DSCleaner’s class diagram

These are the main components of the package

[image: Dscleaner class diagram]

dscleaner.IFileInfo class

	
class dscleaner.ifileinfo.IFileInfo(file)[source]

	Bases: abc.ABC

Interface which must be implemented if you want to support your own filetype;
Used as an argument to FileWriter, FileUtil and FileMerger.

	
addSamples(samples)[source]

	Adds samples given by samples.

	Parameters

	samples – An array containing samples.
It must be shaped like (n,c) where c is the number of channels.

	
close()[source]

	Defines the behavior the class should have when leaves the context manager.

If a file descriptor is being used you should always define the close method.

	
getFilepath()[source]

	
	Returns

	The filepath of the current file.

	
getNumberOfChannels()[source]

	
	Returns

	The number of channels the file has.

	
getNumberOfFrames()[source]

	
	Returns

	The number of frames the file has.

	
getSamplerate()[source]

	
	Returns

	The samplerate of the file.

	
getSamples()[source]

	
	Returns

	All the samples the file has.

	
setSamples(samples)[source]

	Writes to the file the samples given in samples.

It will truncate the old samples.
If you want to add, use the addSamples method.

	Parameters

	samples – An array containing the new samples.
It must be shaped like (n,c) where c is the number of channels

	
truncate(num_frames)[source]

	Truncates the file to have only the first num_frames samples.

	Parameters

	num_frames – The number of frames the file will have.

dscleaner.CSVFileInfo class

	
class dscleaner.csvfileinfo.CsvFileInfo(samples, samplerate)[source]

	Bases: dscleaner.ifileinfo.IFileInfo

CsvFileInfo is used when there is no actual file, but an array.

The array must be shaped in (n,c) where c is the number of channels.

	
addSamples(samples)[source]

	See the base class ifileinfo.

	
close()[source]

	Does nothing since the sample container is an array.

	
getFilepath()[source]

	Don’t rely on this method because it’s not implemented.

	
getNumberOfChannels()[source]

	See the base class ifileinfo.

	
getNumberOfFrames()[source]

	See the base class ifileinfo.

	
getSamplerate()[source]

	See the base class ifileinfo.

	
getSamples()[source]

	See the base class ifileinfo.

	
setSamples(samples, framerate=None)[source]

	See the base class ifileinfo.

	
truncate(num_frames)[source]

	See the base class ifileinfo.

dscleaner.FileInfo class

	
class dscleaner.fileinfo.FileInfo(path)[source]

	Bases: dscleaner.ifileinfo.IFileInfo

Defines the class to manipulate soundfiles.

Receives a path to a file.

Copies the file to a temporary location.

Gets edited through the FileUtil.

FileWriter converts and writes to another location.

Note

	close method MUST always be called or else the temporary file stays in disk.

	with statements should be used in order to close the files automatically.

	
addSamples(samples)[source]

	Appends the samples to the file.

Similar to ´setSamples()´ but appends instead of truncating.
See the base class ifileinfo.

	
close()[source]

	Must always be called or the file won’t be accessible by other processes AND the temp file will stay in disk.
See the base class ifileinfo.

	
getDuration()[source]

	
	Returns

	The duration of the file in seconds.

	
getFilepath()[source]

	See the base class ifileinfo.

	
getNumberOfChannels()[source]

	
	Returns

	Number of channels the file has.

	
getNumberOfFrames()[source]

	See the base class ifileinfo.

	
getSamplerate()[source]

	See the base class ifileinfo.

	
getSamples()[source]

	Reads all of the samples in the file

	Returns

	numpy array containing the samples.

	
get_rounded_duration()[source]

	
	Returns

	The rounded duration in seconds.

	
setSamples(samples, samplerate=None)[source]

	Writes the ´samples´ as the new samples in the file.

	Parameters

	
	samples – numpy array shaped like (n,c), where c is the number of channels.

	samplerate – the new sample rate the file will have, if none it will use the initial samplerate.

	
truncate(num_frames)[source]

	Truncates the file to only have num_frames.

dscleaner.FileUtil class

	
class dscleaner.fileutil.FileUtil(f)[source]

	Bases: object

FileUtil class is where the dataset manipulation occur.

The class should be instantiated with a with statement.

	Parameters

	f – a IFileInfo specialization must be supplied!

	
fix_duration(expected_duration, grid_rate=50)[source]

	Fixes the file to the expected duration.

	Parameters

	
	expected_duration – Duration the file should have in minutes.

	grid_rate – frequency of the grid in hertz, this is used to discover the wave signal in order to upsample.

	
resample(new_framerate, method='kaiser_fast')[source]

	Resamples the data to the new framerate using librosa resample.

	Parameters

	
	data – numpy.array shaped like (num_frames,num_channels) is expected to receive the soundfile.getSamples()
not the transposed array.

	original_framerate – the original framerate the data array uses.

	new_framerate – the new framerate that data will be resampled to.

	method – Methods that librosa accepts are also accepted here, uses kaiser_fast by default.

	
standardize(*dividers)[source]

	This method transforms the values to fit between -1 and 1, in order to be used in soundfiles.

If the source file isn’t a soundfile the target file will not be well formated,
hence you should run this method to make the file well formated.

	Parameters

	*dividers – The number which each channel will be divided by in order to standardize that channel.

Note

In order to maintain consistency throughout the dataset it is advised that the
divider chosen for each channel to be a bit higher than the max value.
It is also advised to keep record of the divider for each channel for future unstardartization.

	Example:

	Max amplitude is 75
divider chosen: 90.

	Returns

	
	A tuple with the dividers used to standardize.

	
	Example:

	(40,30,30) in a three channel file.

You should keep these values for future reference.

dscleaner.FileWriter class

	
class dscleaner.filewriter.FileWriter(file, mode='w')[source]

	Bases: object

Writes to a file.

The class should be instantiated with a with statement.

	Parameters

	
	file – Accepts either a FileUtil, or IFileInfo Specialization.

	mode – Allows for w for writing or a for appending.

	
close()[source]

	

	
create_file(new_filepath, samplerate=None)[source]

	Creates a new file with the extension given in new_filepath.

If the source file isn’t a soundfile the target file will not be well formated.

In order to normalize, you should run FileUtil.standardize method before.

	Parameters

	
	- The diretory and name the new file will have, (new_filepath) – it will convert based on file extension.

	samplerate (Optional) – if not supplied it will use the own file samplerate.

	
create_file_EMDDF(new_filepath, json_file, samplerate=None)[source]

	Creates a soundfile with the EMD-DF format, recurs to the pyemddf package

Note

Only works on wave and wave64 files.

	Parameters

	
	samplerate (optional) – Samplerate of the file.

	json_file – a JSON file with the metadata fields, you can get a template

	it by executing pyemddf.create_template_file() (for) –

dscleaner.Merger class

	
class dscleaner.merger.Merger(channels, path, samplerate, cutoff=None, mode='a')[source]

	Bases: object

Merger allows for creation of an empty soundfile to store multiple datasets easily.

Note

W64 filetype is recommended, given it can store up to 18 exabytes of data.

	Parameters

	
	channels – Number of channels the files parsed should have.

	path – the path where the new merger file should be created.

	samplerate – samplerate to write on the file.

	cutoff – how often should the file be written NOT IMPLEMENTED
(eg. for each 1024MB of data reached a new file is created)

	mode – either ‘a’ or ‘w’ if the file should be appended or truncated, respectively.
Default behavior: append

	
add(*files)[source]

	
Adds new samples to the buffer array.

When create_file method is executed the buffer gets emptied.

	Parameters

	*files – An array, containing several pathes to files or IFileInfos specializations,
although the latter is preferred.

	
create_file(samplerate=None)[source]

	Creates a new file with the filename, converts based on extension given in new_filename

When executed the sample buffer will be emptied,
so create_file should be executed frequently.

	Parameters

	samplerate – Samplerate of the file.

dscleaner.Splitter class

	
class dscleaner.splitter.Splitter(channels, path, samplerate, max_length)[source]

	Bases: object

Splitter allows splitting an existing file.

	Parameters

	
	channels – Number of channels the files parsed should have.

	path – the path where the new merger file should be created.

	samplerate – samplerate to write on the file.

	max_length – Maximum file length in minutes.

	
add(*files)[source]

	
Adds new samples to the buffer array.

When create_file method is executed the buffer gets emptied.

	Parameters

	*files – An array, containing several pathes to files or IFileInfos specializations,
although the latter is preferred.

	
create_file(samplerate=None)[source]

	Creates a new file with the filename, converts based on extension given in new_filename

When executed the sample buffer will be emptied,
so create_file should be executed frequently.

	Parameters

	samplerate – Samplerate of the file.

dscleaner.Utils module

	
dscleaner.utils.is_number(input)[source]

	Receives an input and checks if it is actually a number

	
dscleaner.utils.path_splitter(path)[source]

	Cleans extra / characters,
splits the path in 4 parts: See example

	Parameters

	path – Receives a path

	Returns

	
	dictionary with the following keys:

	{full_path, path, file, file_name, extension}

	Return type

	tuple

Example

>>> path.splitter('C:/Data/example.wav/')
{
 'full_path':'C:/Data/example.wav',
 'path':'C:/Data/',
 'file':'example',
 'file_name':'example.wav',
 'extension':'wav'
}

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dscleaner	

 	
 	
 dscleaner.csvfileinfo	

 	
 	
 dscleaner.fileinfo	

 	
 	
 dscleaner.fileutil	

 	
 	
 dscleaner.filewriter	

 	
 	
 dscleaner.ifileinfo	

 	
 	
 dscleaner.merger	

 	
 	
 dscleaner.splitter	

 	
 	
 dscleaner.utils	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | T

A

 	
 	add() (dscleaner.merger.Merger method)

 	(dscleaner.splitter.Splitter method)

 	
 	addSamples() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

C

 	
 	close() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.filewriter.FileWriter method)

 	(dscleaner.ifileinfo.IFileInfo method)

 	
 	create_file() (dscleaner.filewriter.FileWriter method)

 	(dscleaner.merger.Merger method)

 	(dscleaner.splitter.Splitter method)

 	create_file_EMDDF() (dscleaner.filewriter.FileWriter method)

 	CsvFileInfo (class in dscleaner.csvfileinfo)

D

 	
 	dscleaner.csvfileinfo (module)

 	dscleaner.fileinfo (module)

 	dscleaner.fileutil (module)

 	dscleaner.filewriter (module)

 	
 	dscleaner.ifileinfo (module)

 	dscleaner.merger (module)

 	dscleaner.splitter (module)

 	dscleaner.utils (module)

F

 	
 	FileInfo (class in dscleaner.fileinfo)

 	FileUtil (class in dscleaner.fileutil)

 	
 	FileWriter (class in dscleaner.filewriter)

 	fix_duration() (dscleaner.fileutil.FileUtil method)

G

 	
 	get_rounded_duration() (dscleaner.fileinfo.FileInfo method)

 	getDuration() (dscleaner.fileinfo.FileInfo method)

 	getFilepath() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

 	getNumberOfChannels() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

 	
 	getNumberOfFrames() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

 	getSamplerate() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

 	getSamples() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

I

 	
 	IFileInfo (class in dscleaner.ifileinfo)

 	
 	is_number() (in module dscleaner.utils)

M

 	
 	Merger (class in dscleaner.merger)

P

 	
 	path_splitter() (in module dscleaner.utils)

R

 	
 	resample() (dscleaner.fileutil.FileUtil method)

S

 	
 	setSamples() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

 	
 	Splitter (class in dscleaner.splitter)

 	standardize() (dscleaner.fileutil.FileUtil method)

T

 	
 	truncate() (dscleaner.csvfileinfo.CsvFileInfo method)

 	(dscleaner.fileinfo.FileInfo method)

 	(dscleaner.ifileinfo.IFileInfo method)

What is DS Cleaner?

DS Cleaner (Dataset Cleaner) is a library that allows for easy cleanup of energy disagregation datasets and allows
converting in wave and wave64.
Is based in librosa and PySoundFile library.

Complete DSCleaner

	DS Cleaner Package
	DSCleaner’s class diagram

	dscleaner.IFileInfo class

	dscleaner.CSVFileInfo class

	dscleaner.FileInfo class

	dscleaner.FileUtil class

	dscleaner.FileWriter class

	dscleaner.Merger class

	dscleaner.Splitter class

	dscleaner.Utils module

 All modules for which code is available

	dscleaner.csvfileinfo

	dscleaner.fileinfo

	dscleaner.fileutil

	dscleaner.filewriter

	dscleaner.ifileinfo

	dscleaner.merger

	dscleaner.splitter

	dscleaner.utils

 Source code for dscleaner.csvfileinfo

from . import ifileinfo
import pandas as pd

[docs]class CsvFileInfo(ifileinfo.IFileInfo):
 """
 CsvFileInfo is used when there is no actual file, but an array.

 The array must be shaped in (n,c) where c is the number of channels.
 """
 def __init__(self, samples, samplerate):
 self._samples = samples
 self._samplerate = samplerate
 pass

 def __enter__(self):
 """
 See the base class ``ifileinfo``.
 """
 return self

 def __exit__(self,type,value,traceback):
 """
 See the base class ``ifileinfo``.
 """
 self.close()

[docs] def getSamples(self):
 """
 See the base class ``ifileinfo``.
 """

 return self._samples

[docs] def getSamplerate(self):
 """
 See the base class ``ifileinfo``.
 """

 return self._samplerate

[docs] def getNumberOfFrames(self):
 """
 See the base class ``ifileinfo``.
 """

 return len(self._samples)

[docs] def getNumberOfChannels(self):
 """
 See the base class ``ifileinfo``.
 """

 try:
 numchannels = self._samples.shape[1]
 except IndexError as e:
 numchannels = 1
 return numchannels

[docs] def getFilepath(self):
 """
 Don't rely on this method because it's not implemented.
 """
 raise NotImplementedError("Not avaliable in csvFileInfo")

 #WRITE
[docs] def setSamples(self, samples, framerate = None):
 """
 See the base class ``ifileinfo``.
 """

 if (framerate == None):
 framerate = self.getSamplerate()
 self._samples = samples
 self._samplerate = framerate
 return

[docs] def truncate(self, num_frames):
 """
 See the base class ``ifileinfo``.
 """

 self._samples = self._samples[:num_frames]
 return

[docs] def addSamples(self, samples):
 """
 See the base class ``ifileinfo``.
 """

 self._samples.append(samples)
 return

[docs] def close(self):
 """
 Does nothing since the sample container is an array.
 """

 return

 Source code for dscleaner.fileinfo

import soundfile as sf
import tempfile
import os
from .ifileinfo import IFileInfo

[docs]class FileInfo(IFileInfo):
 """
 Defines the class to manipulate soundfiles.

 Receives a path to a file.

 Copies the file to a temporary location.

 Gets edited through the FileUtil.

 FileWriter converts and writes to another location.

 NOTE:
 - close method MUST always be called or else the temporary file stays in disk.
 - ``with`` statements should be used in order to close the files automatically.

 """
 def __init__(self,path):
 super().__init__(path)
 self._path = path #ACTUAL FILE
 self._tmpPath = tempfile.gettempdir() #TEMPORARY COPY

 try:
 import shutil
 self._tmpPath = shutil.copy(self._path,self._tmpPath)
 except FileExistsError:
 print("FEXISTS l28")
 pass
 self._initinfo()

 def __enter__(self):
 return self

 def __exit__(self,type,value,traceback):
 self.close()

 def _initinfo(self):
 with sf.SoundFile(self._tmpPath, mode ='r') as rfile:
 self._samplerate = rfile.samplerate
 self._frames = rfile.read()
 self._numchannels = rfile.channels
 return

 #================READ METHODS ==================#

[docs] def getFilepath(self):
 """
 See the base class ``ifileinfo``.
 """
 return self._path

[docs] def getNumberOfFrames(self):
 """
 See the base class ``ifileinfo``.
 """
 return len(self.getSamples())

[docs] def getSamplerate(self):
 """
 See the base class ``ifileinfo``.
 """
 return self._samplerate

[docs] def getNumberOfChannels(self):
 """
 Returns:
 Number of channels the file has.
 """
 return self._numchannels

[docs] def getDuration(self):
 """
 Returns:
 The duration of the file in seconds.
 """
 return self.getNumberOfFrames()/self.getSamplerate()

[docs] def get_rounded_duration(self):
 """
 Returns:
 The rounded duration in seconds.
 """
 from math import ceil
 rounded_duration = ceil(self.getDuration()) #in seconds
 return rounded_duration

[docs] def getSamples(self):
 """
 Reads all of the samples in the file

 Returns:
 numpy array containing the samples.
 """
 return self._frames

 #================WRITE METHODS ==================#

[docs] def setSamples(self, samples, samplerate = None):
 """
 Writes the ´samples´ as the new samples in the file.

 Args:
 samples: numpy array shaped like (n,c), where c is the number of channels.
 samplerate: the new sample rate the file will have, if none it will use the initial samplerate.
 """
 if (samplerate == None):
 samplerate = self.getSamplerate()
 samples = self._soundfile_array_converter(samples)
 with sf.SoundFile(self._tmpPath, mode = 'w', samplerate = self.getSamplerate(), channels = self.getNumberOfChannels()) as wfile:
 wfile.truncate(0) #removes all the samples in the file
 sf.write(self._tmpPath,samples,samplerate)
 self._initinfo()

[docs] def truncate(self,num_frames):
 """
 Truncates the file to only have ``num_frames``.
 """
 #with sf.SoundFile(self._tmpPath, mode = 'w', samplerate = self.getSamplerate(), channels = self.getNumChannels()) as wfile:
 # wfile.truncate(num_frames)
 self.setSamples(self.getSamples()[:num_frames])
 self._initinfo()

[docs] def addSamples(self,samples):
 """
 Appends the samples to the file.

 Similar to ´setSamples()´ but appends instead of truncating.
 See the base class ``ifileinfo``.

 """

 samples = self._soundfile_array_converter(samples)
 with sf.SoundFile(self._tmpPath, mode = 'r+') as wfile:
 wfile.seek(0,whence = sf.SEEK_END)
 wfile.write(samples)

 #================MISC METHODS ==================#

 def _soundfile_array_converter(self,array):
 """
 Checks if it has the correct array shape to be worked by pysoundfile.
 If not, it will transpose de array.
 Arguments:
 array: ndarray to convert.
 Returns:
 array: the converted array.
 """
 if(array.shape[1] > 20): #meaning it doesnt represent the number of channelsnumber of channels
 array = array.T
 return array

[docs] def close(self):
 """
 Must always be called or the file won't be accessible by other processes AND the temp file will stay in disk.
 See the base class ``ifileinfo``.

 """
 import os
 try:
 os.unlink(self._tmpPath)

 except expression as identifier:
 print("err", identifier)

 Source code for dscleaner.fileutil

import os
import numpy as np
from math import ceil
[docs]class FileUtil():
 """
 FileUtil class is where the dataset manipulation occur.

 The class should be instantiated with a ``with`` statement.

 Args:
 f: a IFileInfo specialization must be supplied!
 """
 def __init__(self, f):

 from .ifileinfo import IFileInfo
 assert issubclass(type(f),IFileInfo),"Not a specialization of IFileInfo"
 self.file = f

 def __enter__(self):
 return self

 def __exit__(self,type,value,traceback):
 pass

[docs] def fix_duration(self, expected_duration, grid_rate = 50):
 """
 Fixes the file to the expected duration.

 Args:
 expected_duration: Duration the file should have in minutes.
 grid_rate: frequency of the grid in hertz, this is used to discover the wave signal in order to upsample.
 """
 data = self.file.getSamples()
 sample_rate = self.file.getSamplerate()

 actual_frame_number = len(data)
 expected_frame_number = ceil(sample_rate * expected_duration * 60)
 #rate * minutes * seconds
 if(actual_frame_number == expected_frame_number):
 #no cleaning needed
 return
 else:
 if(actual_frame_number > expected_frame_number):
 self.file.truncate(expected_frame_number)
 else:
 #needs adding
 wave_length = int((sample_rate / grid_rate))
 last_wave = list(data[-wave_length:]) # gets the last wave_length elements
 samples_missing = int(expected_frame_number - actual_frame_number)
 last_wave *= ceil(samples_missing/wave_length) #replicates the last wave several times
 last_wave = np.asarray(last_wave[:samples_missing]) #removes any more than its actually missing
 self.file.addSamples(last_wave)

[docs] def standardize(self,*dividers):
 """
 This method transforms the values to fit between -1 and 1, in order to be used in soundfiles.

 If the source file isn't a soundfile the target file will not be well formated,
 hence you should run this method to make the file well formated.

 Args:
 *dividers: The number which each channel will be divided by in order to standardize that channel.

 NOTE:
 In order to maintain consistency throughout the dataset it is advised that the
 divider chosen for each channel to be a bit higher than the max value.
 It is also advised to keep record of the divider for each channel for future unstardartization.

 Example:
 Max amplitude is 75
 divider chosen: 90.

 Returns:
 A tuple with the dividers used to standardize.
 Example:
 (40,30,30) in a three channel file.

 You should keep these values for future reference.

 """
 iter = 0
 dividers = list(dividers) #convert tuple to list
 if(len(dividers)>self.file.getNumberOfChannels()):
 raise TypeError("There are more dividers than channels in the file!")
 elif(len(dividers) == 0): #if there are no dividers we find the max value in each channel and divide by it
 for i in range(0,self.file.getNumberOfChannels()):
 try:
 dividers.append(ceil(max(self.file.getSamples()[:,i]))) #iterates over each channel
 except IndexError as e:
 dividers.append(ceil(max(self.file.getSamples())))
 try:
 tmp = np.ndarray(shape = self.file.getSamples().shape)
 except IndexError as e:
 tmp = np.array()
 for divider in dividers:
 if(divider in (int,float,0)):
 TypeError("Not a number")
 try:
 tmp[:,iter] = self.file.getSamples()[:,iter]/divider
 except IndexError as e:
 tmp = self.file.getSamples()/divider
 iter += 1
 self.file.setSamples(tmp)
 return (dividers)

[docs] def resample(self, new_framerate, method = 'kaiser_fast'):
 """
 Resamples the data to the new framerate using librosa resample.

 Args:
 data: numpy.array shaped like (num_frames,num_channels) is expected to receive the soundfile.getSamples()
 not the transposed array.
 original_framerate: the original framerate the data array uses.
 new_framerate: the new framerate that data will be resampled to.
 method: Methods that librosa accepts are also accepted here, uses `kaiser_fast` by default.
 """
 data = self.file.getSamples()
 new_framerate = ceil(new_framerate)
 import librosa
 new_data = librosa.resample(data.T, self.file.getSamplerate(), new_framerate, res_type=method, fix=True)
 self.file.setSamples(new_data.T,new_framerate)

 Source code for dscleaner.filewriter

from .utils import path_splitter
import os
import pyemddf
import pandas as pd
[docs]class FileWriter:
 """
 Writes to a file.

 The class should be instantiated with a ``with`` statement.

 Args:
 file: Accepts either a FileUtil, or IFileInfo Specialization.
 mode: Allows for `w` for writing or `a` for appending.
 """
 def __init__(self,file, mode = 'w'):
 from .ifileinfo import IFileInfo
 from .fileutil import FileUtil
 if(issubclass(type(file),IFileInfo)):
 self.file = file
 elif(issubclass(type(file),FileUtil)):
 self.file = file.file
 else:
 raise TypeError("Wrong argument type")

 self.mode = mode

 def __enter__(self):
 return self

 def __exit__(self,type,value,traceback):
 self.close()
[docs] def close(self):
 #self.file.close()
 pass

[docs] def create_file(self,new_filepath,samplerate = None):
 """
 Creates a new file with the extension given in ``new_filepath``.

 If the source file isn't a soundfile the target file will not be well formated.

 In order to normalize, you should run ``FileUtil.standardize`` method before.

 Args:
 new_filepath - The diretory and name the new file will have,
 it will convert based on file extension.
 samplerate (Optional) - The samplerate the file should have,
 if not supplied it will use the own `file` samplerate.
 """

 file_exists = (os.path.isfile(new_filepath))
 if(samplerate == None):
 samplerate = self.file.getSamplerate()
 path = path_splitter(new_filepath)
 if(path['file_name'] == None):
 raise TypeError("It doesn't contain a filename")
 try:
 os.mkdir(path['path'])
 #tries to create the directory
 except (OSError,FileNotFoundError) as e:
 pass
 if(path['extension']=='csv'):
 pd.DataFrame(self.file.getSamples()).to_csv(path['full_path'], header= None,index = None)
 else:
 import soundfile as sf
 if(self.mode == 'a' and file_exists):
 with sf.SoundFile(path['full_path'], mode = 'r+') as wfile:
 wfile.seek(0,sf.SEEK_END)
 wfile.write(self.file.getSamples())
 else:
 sf.write(path['full_path'], self.file.getSamples(), samplerate,format=path['extension']) # writes to the new file
 return

[docs] def create_file_EMDDF(self, new_filepath, json_file, samplerate = None):
 """
 Creates a soundfile with the EMD-DF format, recurs to the ``pyemddf`` package

 NOTE:
 Only works on wave and wave64 files.

 Args:
 samplerate(optional): Samplerate of the file.
 json_file: a JSON file with the metadata fields, you can get a template
 for it by executing ``pyemddf.create_template_file()``.
 """
 if(not(os.path.exists(json_file))): raise FileNotFoundError("There is no file called" + json_file)
 self.create_file(new_filepath,samplerate)
 path = path_splitter(new_filepath)
 pyemddf.addChunks(path['full_path'],json_file)

 Source code for dscleaner.ifileinfo

from abc import ABC, abstractmethod

[docs]class IFileInfo(ABC):
 """
 Interface which must be implemented if you want to support your own filetype;
 Used as an argument to FileWriter, FileUtil and FileMerger.
 """
 def __init__(self,file):
 self.file = file
 pass

 @abstractmethod
 def __enter__(self):
 """
 When entering a context manager the enter method is called.
 This is the most correct way to manipulate files.
 Check the ``FileInfo`` class for examples.
 """

 pass
 @abstractmethod
 def __exit__(self,type,value,traceback):
 """
 When closing a context manager the exit method is called.
 This is the most correct way to manipulate files.
 Check the ``FileInfo`` class for examples.
 """

 pass

[docs] @abstractmethod
 def getFilepath(self):
 """
 Returns:
 The filepath of the current file.
 """
 pass

[docs] @abstractmethod
 def getNumberOfFrames(self):
 """
 Returns:
 The number of frames the file has.
 """
 pass

[docs] @abstractmethod
 def getSamplerate(self):
 """
 Returns:
 The samplerate of the file.
 """
 pass

[docs] @abstractmethod
 def getNumberOfChannels(self):
 """
 Returns:
 The number of channels the file has.
 """
 pass

[docs] @abstractmethod
 def getSamples(self):
 """
 Returns:
 All the samples the file has.
 """
 pass

 # writing methods
[docs] @abstractmethod
 def setSamples(self, samples):
 """
 Writes to the file the samples given in ``samples``.

 It will truncate the old samples.
 If you want to add, use the ``addSamples`` method.

 Args:
 samples: An array containing the new samples.
 It must be shaped like (n,c) where c is the number of channels
 """
 pass

[docs] @abstractmethod
 def truncate(self, num_frames):
 """
 Truncates the file to have only the first ``num_frames`` samples.

 Args:
 num_frames: The number of frames the file will have.
 """

 pass

[docs] @abstractmethod
 def addSamples(self, samples):
 """
 Adds samples given by ``samples``.

 Args:
 samples: An array containing samples.
 It must be shaped like (n,c) where c is the number of channels.
 """

 pass

[docs] @abstractmethod
 def close(self):
 """
 Defines the behavior the class should have when leaves the context manager.

 If a file descriptor is being used you should always define the close method.
 """
 pass

 Source code for dscleaner.merger

from .fileinfo import FileInfo
from . import ifileinfo, filewriter, CsvFileInfo, utils
import numpy as np
import os
import soundfile as sf

[docs]class Merger():
 """
 Merger allows for creation of an empty soundfile to store multiple datasets easily.

 NOTE:
 W64 filetype is recommended, given it can store up to 18 exabytes of data.

 Args:
 channels: Number of channels the files parsed should have.
 path: the path where the new merger file should be created.
 samplerate: samplerate to write on the file.
 cutoff: how often should the file be written **NOT IMPLEMENTED**
 (eg. for each 1024MB of data reached a new file is created)
 mode: either 'a' or 'w' if the file should be appended or truncated, respectively.
 Default behavior: append
 """
 def __init__(self, channels, path, samplerate, cutoff = None, mode='a'):

 self._channels = channels
 self._init_samples()
 if(isinstance(samplerate,int)):
 self._samplerate = samplerate
 else:
 raise TypeError("Samplerate not integer")
 self.path = path

 #if the file exists already, then there's no need to create it(FileInfo)
 #if theres no file, we need to create it (array)
 self.file_exists = (os.path.isfile(self.path))

 self.mode = mode

 def _init_samples(self):
 self._samples = np.empty(shape=(0,self._channels))

 def __enter__(self):
 return self

 def __exit__(self,type,value,traceback):
 pass

[docs] def add(self, *files):
 """
 Adds new samples to the buffer array.

 When ``create_file`` method is executed the buffer gets emptied.

 Args:
 *files: An array, containing several pathes to files or IFileInfos specializations,
 although the latter is preferred.
 """
 tmp = None
 for f in files:
 if(issubclass(type(f),ifileinfo.IFileInfo)):
 tmp = f.getSamples()
 else:
 with FileInfo(f) as this:
 tmp = this.getSamples()
 self._samples = np.append(self._samples,tmp,axis=0)

 #if(sys.getsizeof(self._samples) > (2**29)): escreve no ficheiro; para tal é necessário ter o ficheiro pré definido
 #adicionar 2**29(512MB) como cutoff

[docs] def create_file(self, samplerate = None):
 """
 Creates a new file with the filename, converts based on extension given in ``new_filename``

 When executed the sample buffer will be emptied,
 so ``create_file`` should be executed frequently.

 Args:
 samplerate: Samplerate of the file.

 """
 if(len(self._samples) == 0):
 raise TypeError("No samples are queued!")
 if(samplerate == None):
 samplerate = self._samplerate
 path = utils.path_splitter(self.path)
 if(path['file_name'] == None):
 raise TypeError("It doesn't contain an extension")
 #tries to create the directory
 try:
 import os
 os.mkdir(path['path'])
 except (OSError,FileNotFoundError) as e:
 #import errno
 pass
 #if(e.errno != errno.EEXIST):
 # raise #if there's an error thats not eexits(file/directory exists)
 #Appends or simply write over the file based on mode
 if(self.mode == 'a' and self.file_exists == True):
 with sf.SoundFile(path['full_path'], mode = 'r+') as wfile:
 wfile.seek(0,sf.SEEK_END)
 wfile.write(self._samples)
 self._init_samples()

 else:
 with CsvFileInfo(self._samples,self._samplerate) as infofile:
 self.file_exists = True
 self._init_samples()
 with filewriter.FileWriter(infofile) as fw:
 fw.create_file(path['full_path'], self._samplerate)

 Source code for dscleaner.splitter

from .fileinfo import FileInfo
from . import ifileinfo, filewriter, CsvFileInfo, utils
import numpy as np
import os
import soundfile as sf
from math import ceil

[docs]class Splitter():
 """
 Splitter allows splitting an existing file.

 Args:
 channels: Number of channels the files parsed should have.
 path: the path where the new merger file should be created.
 samplerate: samplerate to write on the file.
 max_length: Maximum file length in minutes.

 """
 def __init__(self, channels, path, samplerate, max_length):
 #need to figure out if either max_length by time or by size
 self._channels = channels
 self._init_samples()
 if(isinstance(samplerate,int)):
 self._samplerate = samplerate
 else:
 raise TypeError("Samplerate not integer")

 #if(not(isinstance(max_length,int))):
 # raise TypeError("max_length not integer")

 self.path = path
 #max_length = minutes * seconds
 self.max_num_samples = ceil((max_length * 60) * samplerate)
 #if the file exists already, then there's no need to create it(FileInfo)
 #if theres no file, we need to create it (array)
 self.file_exists = (os.path.isfile(self.path))

 def _init_samples(self):
 self._samples = np.empty(shape=(0,self._channels))

 def __enter__(self):
 return self

 def __exit__(self,type,value,traceback):
 pass

[docs] def add(self, *files):
 """
 Adds new samples to the buffer array.

 When ``create_file`` method is executed the buffer gets emptied.

 Args:
 *files: An array, containing several pathes to files or IFileInfos specializations,
 although the latter is preferred.
 """
 tmp = None
 for f in files:
 if(issubclass(type(f),ifileinfo.IFileInfo)):
 tmp = f.getSamples()
 else:
 with FileInfo(f) as this:
 tmp = this.getSamples()
 self._samples = np.append(self._samples,tmp,axis=0)

[docs] def create_file(self, samplerate = None):
 """
 Creates a new file with the filename, converts based on extension given in ``new_filename``

 When executed the sample buffer will be emptied,
 so ``create_file`` should be executed frequently.

 Args:
 samplerate: Samplerate of the file.

 """
 if(len(self._samples) == 0):
 raise TypeError("No samples are queued!")
 if(samplerate == None):
 samplerate = self._samplerate
 path = utils.path_splitter(self.path)
 if(path['file_name'] == None):
 raise TypeError("It doesn't contain an extension")
 #tries to create the directory
 try:
 import os
 os.mkdir(path['path'])
 except (OSError,FileNotFoundError) as e:
 pass
 samples_left = len(self._samples)
 files_index = 0

 while(samples_left > 0):
 samples_to_write = self._samples[self.max_num_samples*files_index:self.max_num_samples*(files_index+1)]
 samples_left -= self.max_num_samples
 with CsvFileInfo(samples_to_write,self._samplerate) as infofile:
 with filewriter.FileWriter(infofile) as fw:
 fw.create_file(path['path']+path['file_name']+'_'+str(files_index)+'.'+path['extension'], self._samplerate)
 files_index+=1
 self._init_samples()

 Source code for dscleaner.utils

[docs]def path_splitter(path):
 """
 Cleans extra / characters,
 splits the path in 4 parts: See example

 Parameters:
 path:
 Receives a path

 Returns:
 tuple: dictionary with the following keys:
 {full_path, path, file, file_name, extension}

 Example:
 >>> path.splitter('C:/Data/example.wav/')
 {
 'full_path':'C:/Data/example.wav',
 'path':'C:/Data/',
 'file':'example',
 'file_name':'example.wav',
 'extension':'wav'
 }
 """

 if(path.endswith("/")):
 #if it ends with a slash removes it
 path = path[:-1]
 stripped_path = path.split("/")
 if("." in path[2:]): #if it has a dot means it has an extension; [2:] is used in case it is a relative path
 path = '/'.join(stripped_path[:-1])+'/' #constructs the path, except the filename
 file_with_extension = stripped_path[-1] #gets the filename
 file_name = file_with_extension.split('.')[0]
 extension = file_with_extension.split('.')[-1] # gets the extension
 else:
 path = '/'.join(stripped_path)+'/' #constructs the path, except the filename
 file_name = None
 extension = None
 file_with_extension = None
 if(len(path) < 2):
 #if it has only a character(possibly /, so removes it in order to avoid refering to root on mac/linux)
 #now theres a problem... if the user really wants to refer to the root? Shame, you cannot lol
 path = path[:-1]
 return {'full_path': path+file_with_extension ,'path': path,'file': file_with_extension, 'file_name': file_name,'extension': extension}

[docs]def is_number(input):
 """
 Receives an input and checks if it is actually a number
 """
 try:
 float(input)
 except ValueError as id:
 return False
 else:
 return True

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_images/dscleaner.png
anterfaces

Merge
fle

__init__(channels. path, sampler|
- Zenter_(): Merge
- exit_(type values traceback)
_init_samples(): void
+add(samples): void
+ create_fle() void

|
+Zenfer_

+ext_{typevalues, traceback) [&———————

getFilepatn() - sting
+ getNumberOfFrames(: int
~ getSamplerate
+ getNumberofChan
= getSamples() - array
~ setSamples(samples) - void
~ truncate(num_frames) - void
+ 5ddSamples() - void

+ close() void

0 int

Fileino

“pain
~_tmpPath
Zsamplerate

—numchannels

+ _init_(path) - void
- Zenter_() -l

- exit_ype values traceback)
+getFilepatn() - sting

+ gethumberOfF rames() - int

+ getSamplerate() - int

+ getNumberOfChannels() - int
+ getSamples() - array

+ setSamples(samples) - void

CSVFieinfo

“pain
~_tmpPath
samplerate
frames.
—numchannels

+ _init_(samples, samplerate)
Zenter_() -l
exit_(fype values traceback)
+getFilepatn() - sting

+ gethumberOfF rames() - int

+ getSamplerate() - int

+ getNumberOfChannels() - int
+ getSamples() - array

+ setSamples(samples) - void

FileUti
) ~ile
+_init_(Fileinfo) - void
- Zenter_(: FileUti

exit_(fype values traceback)
+Tox_duration(expected_duration
+ standardize(dviders) - void
+ resample(method) - void

0.1
FileWriter

e

+_init_(Fileinfo) - void

Zenter_(: FileWriter
- exit_(fype values traceback)
+Tox_duration(expected_duration
+ standardize(dviders) - void

+ resample(method) - void

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to DSCleaner’s documentation!

 		
 DS Cleaner Package

 		
 DSCleaner’s class diagram

 		
 dscleaner.IFileInfo class

 		
 dscleaner.CSVFileInfo class

 		
 dscleaner.FileInfo class

 		
 dscleaner.FileUtil class

 		
 dscleaner.FileWriter class

 		
 dscleaner.Merger class

 		
 dscleaner.Splitter class

 		
 dscleaner.Utils module

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

